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Abstract. We study the steady state properties of an absorptive optical bistable model in the presence
of correlated noises. Based on the corresponding Fokker-Planck equation the steady state solution of the
probability distribution and the average value of the transmitted light have been investigated. We have
found that fluctuations of the input light amplitude improve the transmitted light and an optimized value
exists for the fluctuations of the population difference at which the transmitted light takes its maximum
value. The correlation between the two noises reduce the transmitted light and the noises in the model can
induce a phase transition.

PACS. 05.40.-a Nonlinear dynamics and chaos – 02.50.Ey Stochastic processes

1 Introduction

Recently, nonlinear stochastic systems with noise terms
have been the subject of extensive investigations. The con-
cept of noise-induced transition has many applications in
the fields of physics, chemistry and biology [1,2]. In these
systems the noise usually affects the dynamics through
a system variable, i.e., the noise is both multiplicative
and additive [3]. The focal theme of these investigations is
to study the steady state properties of systems in which
fluctuations, generally applied from outside, are consid-
ered independent of the system’s characteristic dissipa-
tion. Since the two types of fluctuations have a common
origin, they are correlated in the relevant timescale of the
problem [4]. On the level of a Langevin-type description of
a dynamical system, the presence of correlation between
noise can change the dynamics of the system [5,6]. Corre-
lated noise processes have found applications in a broad
range of studies such as steady state properties of a sin-
gle mode laser [7], bistable kinetics [8], directed motion
in spatially symmetric periodic potentials [9], stochastic
resonance in linear systems [10], and steady state entropy
production [11]. In this paper we study an absorptive opti-
cal bistable model in the presence of the correlated noises,
and show how noise can dynamically affect the optical
system.

a e-mail: aibq@scnu.edu.cn

2 Stationary probability distribution
in an absorptive optical bistable model

Consider a ring interferometer with a passive medium
placed in it. Light is coupled into the interferometer
through a semipermeable mirror and, likewise, light is
transmitted at another mirror. Measuring the intensity of
the transmitted wave against the intensity of the incident
wave, one finds an S-shaped curve; e.g., for some values
of the intensity of the incident beam the intensity of the
transmitted wave can have a small and a large intensity.
There are different mechanisms that can be responsible
for this behavior. One of them is due to nonlinear absorp-
tion in the passive medium. A model for purely absorptive
optical bistability in a cavity was introduced by Bonifacio
and Lugiato [12]. For the scaled dimensionless amplitude y
of the input light and the scaled dimensionless amplitude
of the transmitted light x, the equation of motion — in
the adiabatic limit of atomic variables can be derived [12]

dx

dt
= y − x − 2cx

1 + x2
, (1)

where c is proportional to the population difference in the
two relevant atomic levels and is controlled by varying the
density, the length and reflectivity.

Figure 1 shows the stationary transmitted light am-
plitude x as a function of the input light amplitude y for
different values of c. When c ≤ 4, equation (1) has only one
solution for all values of y. When c > 4, equation (1) may
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Fig. 1. The stationary transmitted light amplitude x vs. the
input light amplitude y for different values of c = 0, 2, 4, 10, 20.

have three solutions for an appropriate value of y. When
c = 0, x is equal to y. For a large enough population dif-
ference c, the stationary transmitted light amplitude is an
S-shaped function of the amplitude of the input light, thus
indicating bistability.

In this paper, we let c = 6 and y = 6.72584. The
associated potential:

U(x) =
1
2
x2 − yx + c ln(1 + x2), (2)

is shown in Figure 2. From Figure 2, we can see that the
system is bistable and has two stable states x1 = 0.8294,
x2 = 3.7114 and an unstable state x0 = 2.1851.

Now, if some environmental external disturbances
make both the input light amplitude and the density or
population difference fluctuate, they are likely to affect y
and c in the form of an additive noise and a multiplicative
noise that are connected through a correlation parame-
ter λ. As a result we have

dx

dτ
= y − x − 2cx

1 + x2
− x

1 + x2
Γ (t) + ξ(t). (3)

Where Γ (t) and ξ(t)are Gaussian white noises with the
following properties [14]:

〈Γ (t)〉 = 〈ξ(t)〉 = 0, (4)

〈Γ (t)Γ (s)〉 = 2Dδ(t − s), (5)

〈ξ(t)ξ(s)〉 = 2σδ(t − s), (6)

〈ξ(t)Γ (s)〉 = 〈Γ (t)ξ(s)〉 = 2λ
√

Dσδ(t − s). (7)

where D and σ are the strength of noise Γ (t) and ξ(t),
respectively, and λ denotes the degree of correlation be-
tween Γ (t) and ξ(t) with 0 ≤ λ ≤ 1.

We can derive the corresponding Fokker-Planck equa-
tion for the evolution of the probability distribution based
on equations (3)–(7). Adopting Stratonovich’s interpreta-
tion, this equation satisfies [13,14]

∂P (x, t)
∂t

= −∂A(x)P (x, t)
∂x

+
∂2B(x)P (x, t)

∂x2
, (8)
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Fig. 2. The potential U(x) vs. x for c = 6 and y = 6.72584.

where

A(x) = h(x) + Dg1(x)g
′
1(x) + λ

√
Dσg1(x)g

′
2(x)

+λ
√

Dσg
′
1(x)g2(x) + σg2(x)g

′
2(x), (9)

B(x) = Dg2
1(x) + 2λ

√
Dσg1(x)g2(x) + σg2

2(x), (10)

here h(x) = y − x − 2cx
1+x2 , g1(x) = − x

1+x2 , g2(x) = 1.
The steady probability distribution of the Fokker-Planck
equation is given by [14]

Pst(x) =
N0

B(x)
exp

[∫ x A(x
′
)

B(x′ )
dx

′
]

. (11)

where N0 is the normalization constant. The average am-
plitude of transmitted light 〈x〉 can be determined by

〈x〉 =

∫ ∞
0

x pst(x)dx∫ ∞
0

pst(x)dx
. (12)

3 Results and discussion

Figure 3a shows the effect of the noise intensity σ of the
input light on the steady state probability distribution.
When D = 0 and λ = 0, only one noise — the fluctuation
of the input light–acts on the system. When σ is small
(0.05), the effect of the potential dominates and U(x1) <
U(x2), so the peak at x1 is very high. When σ increases,
the peak at x1 decreases and the peak at x2 increases. The
peaks flatten out and almost vanish for a large enough
value of σ, indicating that the additive noise is a diffusive
term. The positions of the peaks are weakly affected by σ.
Figure 3b shows the average transmitted light amplitude
as a function of σ. The average value of x increases with
the fluctuation σ of the input light. For a large enough
value of σ, the fluctuation dominates, and saturates to a
certain value. Similar asymmetry effects were reported in
Borromeo and Marchesoni’ work [15].

Figure 4a shows the steady state probability density
Pst(x) as a function of the transmitted light amplitude x
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Fig. 3. (a) Steady state probability density Pst(x) vs. the transmitted light amplitude x for different values of σ = 0.05, 0.1, 1.0
at D = 0 and λ = 0. (b) The average amplitude of the transmitted light 〈x〉 vs σ at D = 0 and λ = 0.
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Fig. 4. (a) Steady state probability density Pst(x) vs. the transmitted light amplitude x for different values of D = 0.0, 0.5, 1.0
at σ = 0.1 and λ = 0.9. (b) The average amplitude of the transmitted light 〈x〉 vs. D at σ = 0.1 and λ = 0.9.

for different values of D. When D = 0, namely no fluc-
tuation of population difference c, there is only one peak
at x1. When D increases, the height of the peak at x1 de-
creases and a new peak appears at x2. The system evolves
from a single state system to a bistable system. The mul-
tiplicative noise is a drift term. The average value of x as
a function of D is shown in Figure 4b. When D is very
small, the system is in one state, so 〈x〉 has no change
with D. When D increases, the system becomes bistable,
so 〈x〉 increases drastically with increasing D. For a large
value of D, the system effects disappear, 〈x〉 decreases to
a certain value. There is an optimum value of D at which
the average value of x takes its maximum value.

In Figure 5a, we show the effect of correlation param-
eter λ on the steady state probability distribution. When
λ = 0 there are two approximately equal-height peaks at
x1 and x2. As the value of λ increases, the peak at x1 in-
creases, while the peak at x1 decreases. The steady state
probability distribution is thus bistable for λ = 0 and be-
comes monostable for larger values of λ. The average value

of x as a function of λ is plotted in Figure 5b. It decreases
as λ increases. Since x denotes the amplitude of transmit-
ted light, it is clear that the correlation between the noise
reduces the amplitude of transmitted light.

4 Concluding remarks

In this paper, we study the steady state properties of an
absorptive optical bistable model in the presence of two
correlated noise. The effects of the fluctuations in the pop-
ulation difference (multiplicative noise) and in the input
light amplitude (additive noise) are investigated. Fluctu-
ation of the input light can improve the transmitted light.
The fluctuation of the population difference has an opti-
mum value at which the transmitted light amplitude takes
its maximum value. Correlation between the noises re-
duces the transmitted light. On the other hand, the noise
can dynamically affect the system. The noise from popula-
tion difference fluctuations makes the system switch from
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Fig. 5. (a) Steady state probability density Pst(x) vs. the transmitted light amplitude x for different values of λ = 0.0, 0.5, 1.0
at D = 1.0 and σ = 1.0. (b) The average amplitude of the transmitted light 〈x〉 vs. λ at D = 1.0 and σ = 1.0.

monostable to bistable behavior, while the correlation be-
tween the two noises induces a transition in the system
from bistable to monostable behavior. In the absorptive
optical bistable model, the noise from the fluctuation of
the parameters can induce a phase transition.
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